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Crack Front Curvature in the Wedge Test

J. Jumel and M. E. R. Shanahan
Université Bordeaux, Laboratoire de Mécanique Physique, CNRS UMR
5469, Talence, France

The wedge test, as used for the evaluation of adhesive fracture energy, is usually
considered to be a 2D geometry: its simple analysis implies independence of
the width of the adhesive joint, b. Recent work has shown this to be an over-
simplification, at least in some circumstances, with (hypothesised) anticlastic
bending giving rise to curvature of the crack front. As a result, crack front length,
a, varies across the joint width leading to ambiguity in the interpretation of results
to obtain fracture energy, G.. This contribution constitutes a more detailed analy-
sis of the geometry of the wedge test (in the particular case of one bending and one
rigid substrate), treating the bent member as a plate, rather than as a simple
beam. The Kirchhoff-Love plate theory is applied and solved by a perturbation
method. Secondary curvature of the beam in the direction normal to the principal
curvature results directly from the treatment, and this, in turn, leads to a concave
crack front, corroborating the above-mentioned experimental observation.

Keywords: 3D effect; Adhesion test; Crack front; Fracture energy; Wedge test

INTRODUCTION

The wedge, or cleavage, adhesion test is a useful method for the
appraisal of adhesives, surface treatments, and structural bonding
ageing properties. Two rectangular sheets of material are bonded
together and a “wedge,” inserted at one end of the structure in order
to force apart the two adherends over a short initial distance. This
leads to time-dependent separation in the remaining bonded region.
Adhesion, or fracture, energy can be deduced as a function of sepa-
ration rate, or crack speed. This technique has been exploited both
experimentally and numerically. Examples are given in [1-11].

Received 7 May 2008; in final form 9 July 2008.

Address correspondence to M. E. R. Shanahan, Université Bordeaux 1, Laboratoire
de Mécanique Physique, CNRS UMR 5469, 351 Cours de la Libération, 33405 Talence
Cedex, France. E-mail: m.shanahan@Imp.u-bordeaux1.fr

788



20: 07 21 January 2011

Downl oaded At:

Crack Front Curvature in the Wedge Test 789

With a judicious choice of adherend dimensions, the test permits one
to remain in the domain of small strains behind the crack front, i.e.,
in the separated zone, thus, limiting plastic deformation of the sub-
strates, which could complicate analysis [10,11]. It can be used in
the constant displacement mode (wedge position fixed with respect
to the bonded joint), in the constant load mode (separation force main-
tained constant, therefore, akin to a double cantilever beam, DCB,
although this latter generally uses rather thick adherends), or in the
constant speed mode (in which the wedge is driven into the joint at
a given rate) [11,12], although there is sometimes confusion about
which analysis is relevant. We shall be principally interested in the
constant displacement version in the following.

The purpose of this article is to consider the wedge test in three
dimensions. The wedge test, as used for the evaluation of adhesive
fracture energy, is usually considered to be in 2D geometry: its simple
analysis implies independence of the width, b, of the adhesive joint.
This assumption seems to be reasonably valid when the substrate
(or beam) thickness is very small compared with the crack front
width [13]. However, there is photographic evidence that this is an
oversimplification of the situation in other cases [14-22]. As an
example, Figure 1 shows the fracture of an essentially rigid substrate

<Direction of crack growth

FIGURE 1 Example of curved crack front in wedge test observed by staining
at different stages of fracture advance. Reprint from Figure 4 in Reference [23],
S. Popineau, B. Gautier, P. Slangen and M. E. R. Shanahan, “A 3-D Effect in
the Wedge Adhesion Test: Application of Speckle Interferometry”, J. Adhesion
80 (12), 1173 (2004). http://www.informaworld.com
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bonded to a more flexible beam, the overall joint width being b, as
indicated. (This, in fact, corresponds to the case modelled below.) It
can be seen that the crack front of this wedge test, viewed by staining
the aluminium (rigid substrate)/epoxy/composite (flexible beam) joint
at various stages of fracture progression, is clearly concave towards
the direction of crack propagation [23]. (The slight asymmetry shown
is not significant.) It may be noted in passing, that if environmental
effects had been the cause, a convex crack front would have been
observed. Other very distinct cases are shown in Chen et al. [19].
Although their work aims at a better understanding of the oscillation
of crack paths over the adhesive thickness, this oscillatory behaviour
can be seen to occur at curved crack fronts. This crack front curvature
is often ignored, or dismissed as an “edge effect”. There is, of course, a
transition from plane strain near the joint middle to plane stress at the
edges. However, in many cases, such as Figure 1, the effect is certainly
more widespread than being confined to the edges, passing across the
entire joint width, from y=+56/2 toy=—b/2.

The effect shown in Figure 1 was studied in more detail using
speckle interferometry [23]. Undoubtedly, a curvature effect was
shown to be present and this was attributed to anticlastic bending
[24] of the separated bending beam. Anticlastic bending is an effect
due to opposite faces of a bent beam being in tension and in com-
pression, leading to orthogonal compression and tension, respectively,
due to Poisson’s ratio. As a result, there is a tendency for inverse cur-
vature normal to the principal bending curvature. A simple theory was
developed which acceptably accounted for this curvature by introdu-
cing anticlastic bending in the far field. However, its major short-
coming was its inability to explain or predict the “competition”
between the beam attempting to curve perpendicularly to the direction
of primary bending under anticlastic effects, and the adhesive resis-
tance near the crack front impeding separation. A numerical approach
to this type of problem, assuming low ratios of joint thickness to
length, and adhesive to adherend modulus, has also been recently
reported [25].

The purpose of this article is to consider in some further detail
phenomena related to a curved crack front and, although the general
problem is exceedingly complicated, we present some progress towards
its final solution. Using the principle of system evolution based on the
fastest minimisation of the free (strain) energy of the bent, separated
part(s) [or beam(s)] of the joint assembly, we show that the system will
naturally adopt a curvature perpendicular to the principal one caused
directly by the bending moment due to the wedge, and that this will
lead to a curved crack front.
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SIMPLE 2D ANALYSIS OF WEDGE TEST

We shall commence with a summary of the classic 2-dimensional (2D)
analysis of the wedge test, as shown schematically in Figure 2. For
simplicity, it is assumed that the lower adherend is completely rigid
and that strain only occurs in the upper member. The system is taken
to be a flexible upper encastre beam embedded in a “wall,” the latter
representing the zone which is still bonded. With the Cartesian coor-
dinates (x, y, z) shown in Figure 2, the x and y axes are coplanar with
the rigid substrate surface, and the origin is at the centre of the beam
system at the position of application of bending load (the wedge end).
We define w(x) as the vertical displacement of the upper member with
respect to the (x, y) plane, although there is no y dependence in this
simple analysis. Applying the standard beam equation:
d*w

M(x) =EI 5, (1)

where M(x) is the bending moment, here equal to Fx, F being the force
acting upwards at the beam extremity, x =0, E is Young’s modulus of
the beam, and I its second moment of inertia (I = bh® /12 with b and A,
respectively, width and thickness).

Equation (1) is solved with the boundary conditions of w(a) =
(dw/dx)(a) = 0, leading to:

3 42 3
w(x)—l%(%—%—i-%). (2)

a, (a,)

A
\ 4

<A

Curved crack front, a(y)

FIGURE 2 Schematic figure of wedge test treated as an encastre beam (top)
separated from a rigid support [surface corresponding to (x, y) plane].
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Using the fact that w(0) = A = Fa3/3EI, where A is the imposed
vertical displacement of the flexed member at x=0, allows us to
simplify Equation (2) to give:

Arx 2rx
w(x):gb—l} =+2). 3)
The strain energy of the beam, U, is readily evaluated from:
M d’*w ,  3EIN
Ux / 2 dx2 T 2a3 (4)

Application of the standard energy release rate equation (at frac-
ture), in which G, is fracture energy, principally in mode 1:

19U
Gety 5 =0, (5)

corresponding to crack growth at the wall, or effective increase in
length of the free beam, permits evaluation of the strain energy
release rate, or energy of adhesion:
3EA®h?
G. = “egt (6)

Equation (6) is the classic wedge test equation, in this case with a pre-
factor of 3/8 since a simple beam is treated. (The more commonly used
two flexible beam system has a pre-factor of 3/16.) Although a good
approximation for narrow (or long) beams, with a/b >> 1, note that,
strictly, Equation (6) applies to conditions of plane stress, or alterna-
tively Poisson’s ratio, v =0. If the joint width, b, is significant (or if
the beam is short), a correction is already required to Equation (6).
Instead of using a bending rigidity of EI [see Equation (1) or (4)], this
term should be replaced by EI (1—1?) [cf. Equation (7) and also
Equation (16)] to allow for the frustrated tendency towards transverse
bending [26,27]. With a plate material possessing a value of v of ca.
0.3, this amounts to an increase of ca. 10%, which is not negligible.
In the above, and what follows, we retain the symbol G., without
specifying failure mode. There will be some mode mixity due to the
asymmetry of this test, but failure will be mainly in mode 1.

Also note that effects of root rotation and deflection [28,29] are
neglected here.

3D ANALYSIS OF SEPARATED ADHEREND (PLATE)
AND CRACK FRONT

The main aim of this article is to suggest an improvement of the classi-
cal beam model for wedge test analysis taking into account crack front
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curvature, using the classical hypothesis of an encastre’ beam in
simple bending.

It is more realistic to treat the “beam” as a 3D object, or more
specifically, as a “plate”. In this case, we have potential variability
of strains, displacements, and stresses along the y direction, where
—b/2 <y<+4b/2. It is then useful to introduce the flexural rigidity
of the plate, D, as:

Eh?
b= 12(1 —v2)’ (7)
where v is Poisson’s ratio.

The basic equations describing bending behaviour are given by the
Kirchhoff-Love plate theory. We define the free (elastic, strain) energy
of the plate per unit surface in the (x, y) plane as 6°W. The W refers to
the total free energy in the 3D plate, and 6°W, therefore, represents
free energy surface density, which is twice integrated (over x and y)
to give W. W is used here to differentiate it from the 2D beam
case, where the symbol U was used, since w can now be a function
of both x and y. Free energy density is related to the three curvature
terms, wy = 0*w/0x?, wyy, = Pw/dy? and wy = ?w/0xdy by the
expression [30]:

W = {(wxx + wyy)2 = 2(1 = v)(Waatwyy — w?cy)}

v e

=5 {wix + wﬁy + 20WiWyy + 2(1 — y)wiy} . (8)
Values of w,,, w,,, and w,, are required in Equation (8). An exact
evaluation of these terms would be exceedingly difficult, but we
approach the problem by assuming that the plate shape following coor-
dinate x is essentially that corresponding to the standard 2D analysis
briefly presented above [Equation (3)], but perturbed in the y direction
by lateral bending effects. Anticipating the final result, the crack
length, a, now becomes a function of y, that is: a(y). It is convenient
to introduce the notation, X(x, y) =x/a(y). As a consequence, we

can rewrite Equation (3) as:
wie, )= 5K ¥) ~3K(x.y) +2). 9)

This, of course, amounts to relaxing the encastre constraint, or more
precisely, assuming that the wall assumes a curvature in the (x, y)
plane corresponding to the crack front shape being sought. As in the
2D case above, in the present analysis root rotation and deflection
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[28,29] are neglected, although it is recognised that these effects are
potentially important in the overall problem.

Evaluation of the various curvatures, wy,, w,,, and w,,, using Equa-
tion (9) and insertion into Equation (8) is straightforward, if rather

complicated, and leads to:
da\*
4X2 2X2 2 Y%
a ) <8y>

- 8a_(y)2_ Y- 23-v)+v
2<8y>(1+X( 9) +2X*(3 —v) +

+2X? (1 —3X2 4 2X*) a(y) 82‘;@)

Paly)
Oy?

2a 2
+(1 —X2)2a(y)2<6T(2y)) )] (10)

The total elastic strain energy of the plate, W, is the integral of 6>W
over the free surface of the plate and can be written:

+b/2 a(y)
W:/ / S*WdX dy. (11)
-b/2 Jo

9DA?
8a(y)*

52W(Xay) -

+ X2 (4 +4v(1 - X?) a(y)

Energy W is a minimum at equilibrium. The first integration,
with respect to X, is again relatively easy, although unwieldy, and
Equations (10) and (11) yield:

70a(y)?

+b/2
v
~b/2
&aly)

+2a2(y)< By ) 2<2l+14y+a

3DA? da(y)

0%
35+11< 8y)+14 al) =55

o) (2o

In Equation (12), the crack length a(y), which corresponds to crack
front shape, varies along the y axis. In order to proceed, we must
determine the function defining a(y). It is just this, the form of the
crack front, which is unknown and of interest. We assume that the
functional form of a(y) may be expressed as a polynomial. Allowing
for symmetry with respect to the x axis and letting a( represent
the crack length at the plate edges (y = £b/2), it is reasonable to

a(y)

(12)
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assume the following form:

N 2k
a(y):a0+2ak ll— (byﬁ> ] (13)
k=1

Since the calculation is of considerable complexity in the general case
of a series of N + 1 terms, we have restricted it to the case of N=1 in
the present case, i.e., it is assumed that the crack front is parabolic.

Equation (13) is inserted into Equation (12) and the free energy of
the plate evaluated over the range y = +b/2 by numerical integration.
This was achieved by using a Gauss-Newton procedure with 12 points
[31]. The kinematics is given by using the beam hypothesis with
length, a(y), varying along the y direction.

An example of such numerical integration is presented in Figure 3.
In this case, it is assumed that the (flexible) material is steel, of
Young’s modulus, E =200 GPa, and Poisson’s ratio, »=0.3. (In fact,
E only appears in the pre-factor D and, therefore, changes nothing
in the overall conformation. Poisson’s ratio, v, is, however, significant
and directly related to anticlastic effects.) Plate thickness, A, is
taken as 1.5mm, width, b, as 2.5cm, wedge thickness, A, as 1 mm,
and a;, the initially constant crack, or free plate, length, as 30 mm.

Direction of

crack growth
5

/
%
?

y)/g

5

A\
.

[
—_

Il

It 4

0.5

o

0.5 1
y (cm)

FIGURE 3 Result of numerical evaluation of Equations (12) and (13) showing
crack front shape as estimated from the Kirchhoff-Love plate theory. Each line
corresponds to a position of the crack front as propagation continues.
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The series of curves progressing upwards from the initial horizontal
line at a; represent the iterations simulating crack growth. The
aspect ratio, or “depth”, of the crack-front continues to increase,
which is unrealistic physically: we shall comment on this below.
However, it can be clearly seen that we obtain a concave crack front
with respect to the separated side of the assembly. This concavity is
qualitatively in agreement with experimental observations, such as
that shown in Figure 1.

Figure 3 may be compared with Figure 4, which is a 3D represen-
tation of the same scenario as described above, but achieved using
finite element analysis (FEA). In order not to digress from the essen-
tial theme of this article, details of the FEA technique employed will be
presented elsewhere. However, briefly, the finite element simulation
considers the same boundary conditions, i.e., clamped edge at the
crack front, the adhesive layer is taken as perfectly rigid, the sides
are supposed free, and finally, a constant displacement is applied.
The FEA model enables us to take into account the anticlastic effect
that might be omitted with the simple beam model. The purpose of
the FEA model is to check if the strong hypothesis on the displacement
field does not produce a large error in the estimate of the stressed
structure energy and, consequently, in the energy released rate.

In Figure 5, we compare the two approaches directly. Using the same
data as above, we present on the right hand side the progression of the
crack front as evaluated by the semi-analytic approach and, on the left
hand side, the progression as found using FEA. Equivalent crack lengths,
as calculated at y = +b/2, are shown. It can be seen quite clearly that, for
a given crack length at the edge, the two approaches lead to very similar
results. At this stage, root rotation and deflection effects [28,29] have
been neglected for both types of calculation to facilitate comparison.
These will be taken into account in a later article.
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FIGURE 4 3D view of crack simulation obtained from finite element analysis.
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Crack front (cm)
H [6)] o
A o0 o o

w
o

—_—
-1 0 1 -1 1
y (cm)

FIGURE 5 Crack propagation simulation with parabolic profile approxi-
mation: comparison between FEA (left) and semi-analytic (right) calculations,
showing a good agreement between both methods.

EVALUATION OF FRACTURE ENERGY

In the plate analysis, the complete problem of evaluation of stored
strain energy represented by W, which is necessary for the evaluation
of strain energy release rate, G, and, therefore, fracture energy, G, is
complex. However, to a first approximation, and notwithstanding the
higher concentration of strain energy nearer the crack-front due to
increased principal moment (given by Fx), Equation (12) may be used
to evaluate W, assuming a straight crack-front and, therefore, a crack
oflength a, independent of y [corresponding to N = 0 in Equation (13)].
After integration, we obtain:

EA?bh3

W ———""— |
8a3(1 —12)

(14)
which is the same expression as that given by Equation (4), apart from
the factor of (1 — 1/2)71, and, thus, corresponds to the simple analysis of
a wide (or short) beam.

A more complete appraisal requires numerical integration
of Equation (12). This has been carried out assuming, in this case, a
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parabolic crack front [¢f. Equation (13) with N=1]. The value of
energy, W, thus found is presented in Figure 6 as a function of crack
length (at y = £b/2), and represented by the term “semi-analytic”.
For comparison, we show the equivalent energy, U, from Equation (4)
(“long beam”), that including a pre-factor of (1 — u2)71 (“short beam”)
and the finite element evaluation (F.E.A). As can be seen, for most of
the range of crack length, a, studied, the simple beam analyses (long
beam and short beam) somewhat overestimate strain energy, parti-
cularly the short beam, whereas the semi-analytic and FEA approaches
are in good agreement. However, the order is changed slightly for crack
lengths close to the initial value of 3 cm. Although the highest energy is
still attributed to the short beam together with the semi-analytic
model, the lowest is now that corresponding to the long beam, with
the FEA in between. For long cracks, the four solutions become closer
asymptotically, as strain energy tends towards zero.

Using the equation relating fracture energy, G, to the release of
stored, strain energy, W:

_aw

dsS’
where S represents surface created during fracture, we obtain, for
N =0 [in Equation (13)]:

3EA%AK3

G = Bai1- )

(16)

- Long Beam
---- Short Beam
— F.EA

— — Semi-Analytic

0 1 L I L 1 L
3 35 4 45 5 55 6 6.5 7 75

a(y =b/2) (cm)

FIGURE 6 Stored elastic energy, W or U, in the separated beam as a function
of crack length, a, the latter evaluated at y = +£b/2. Comparison is made
between the simple long beam and short beam (with pre-factor (1—22)"1)
models (both without crack front curvature), the finite element (FEA), and
semi-analytic (semi-analytic) calculations.
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The result given By Equation (16) was, in fact, anticipated following
Equation (6) above, when allowing for a wide, or short, beam. Numeri-
cal integration for the parabolic crack front (N = 1) has also been done,
and the resulting curve of strain energy release rate, G (corresponding
to G, in an adhesion test), vs a (at y = £b/2) is presented in Figure 7
(semi-analytic). In Figure 7 are also presented the results correspond-
ing to the simple long beam and short beam models, and to the FEA
analysis. In fact, the numerical calculation of G was effected using
the assumption that the local crack propagation direction is that which,
overall, reduces the strain energy, W, the most rapidly. The results
show a similar trend to those portrayed in Figure 6, with the simple
long beam and short beam models presenting a somewhat higher value
of G over most of the range of a considered. For short cracks, viz. only
slightly longer than the (imposed, arbitrary) initial configuration with
a straight crack front at 3cm from the wedge, in fact it is the semi-
analytic solution that presents the value of highest G.

For reasons of computational complexity, we have restricted semi-
analytic and FEA solutions to those corresponding to a parabolic crack
front for comparison. This should be reasonably valid for relatively
narrow adherends (i.e., b/a << 1), but further terms in the series will
undoubtedly be advantageous for a better approximation in the case of
wide beams. Clearly, in principle, Equation (13) would permit a more
refined evaluation both of stored, strain energy and energy release
rate, by increasing the value of N.

400
Long Beam

- Short Beam

350 — FEA

h — — Semi-Analytic

300" 1
A\

\
2501 .

2001

G Wm?

150+

100+

50+

0, I I L ! I i
3 35 4 45 5 55 6 6.5 7 75

a(y =b/2) (cm)

FIGURE 7 Energy release rate, G, as a function of crack length, a, the latter
evaluated at y = £b/2. Comparison is made between the simple long beam and
short beam [with pre-factor (1 — v?)~1] models (both without crack front curva-
ture), the finite element (FEA), and semi-analytic (semi-analytic) calculations.
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Whilst discussing fracture energy, it is instructive to compare Equation
(16) with the earlier model, which assumed anticlastic bending directly
[23]. In the elementary analysis of the wedge test, the adhesive fracture
energy, G, is obtained by equating this quantity to the rate of energy
release which is a function of x and, therefore, a [see Equations (4) to
(6)]. In the 3D version, the principle is, of course, the same, but we must
also allow for elastic energy associated with curvature in the y direction.
Although this effect was taken into account for the shape of the separated
beam and crack length, it was overlooked in the earlier paper as far
as fracture energy is concerned [23]. Using beam theory and invoking
anticlastic bending in a straightforward manner, we may assimilate the

transverse bending (direction y) to a moment m(y) = —vM(x) and curva-
ture wy, = —vwy,. The supplementary strain energy is then:
9 [a b/2
u:—// Mwyydyclx:u2U. (17)

Equation (17) may be compared directly with Equation (4). The total
strain energy, Ur, can then be expressed as:

_ EA*bh3(1+12)

Ur=U+u=>01+/*U -
8ag

(18)
Using Equation (18) with Equation (5) [or (15)], we obtain, as a
modified form of Equation (6):

_ 3EA’R3(1+12)
B 8at ’

which, upon recognising the limited development, (1 — 12) ! ~ (1 4 12),
is very close to the value for G, obtained from the more detailed treatment
[Equations (16)].

There is no significant difference between the two approaches,
Equations (16) and (19) giving virtually identical values for fracture
energy. Different simplifying assumptions have been used for the
two cases, but they lead to essentially the same expression for
adhesion energy. However, we must emphasise that, in both cases,
the fine structure near the crack front has been ignored, and this
can be important in practice, as demonstrated in both Figures 6 and 7.

G, (19)

DISCUSSION

There is excellent quantitative agreement between the results
obtained with the semi-analytic and finite element analyses, especially
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given the limitations of the semi-analytic model. The curvature is con-
cave with respect to the direction of crack propagation. An intriguing
aspect of both of the analyses is that an initially straight crack front
develops continuously increasing curvature as the crack progresses.
This seems to be in contradiction with (our) experimental observa-
tions, in which a fairly constant curvature is attained after initial
growth from the straight starter crack. This is reasonably clear in
Figure 1. However, the analyses presented here are based uniquely
on structural effects. The process of minimisation of strain energy is
regarded purely as a static, elastic effect. Although an increase of
separation rate can either increase or decrease fracture energy, G,
the former is more usual and would tend to fit in better with the type
of experiment under consideration [23,32,33]. (Decreasing fracture
energy with increasing fracture speed tends to be associated with
“stick-slip” behaviour.) This is a materials aspect of the fracture pro-
cess. In the analyses based on structure alone, no consideration is
given to the fact that crack growth rate is found to be maximal at
the centre (y =0), and decreases with increasing |y| in each direction
towards the edges of the joint. The increased, dissipative, energy
expenditure at higher speeds will tend to decrease growth rate as we
approach the x axis. These two conflicting effects may possibly cancel
at dynamic equilibrium. A dynamic energy balance may build up, thus
moderating the rate of change of concavity of the crack front, leading
to an essentially constant shape. An alternative possibility is that the
structural aspect of the wedge geometry has not yet been fully mas-
tered. Various effects still requiring attention include changes from
plane stress to plane strain across the beam width, stress reduction
due to the stiffness of the joint edges, and effects of elastic foundation
[28,29].

This leads us to another consideration. We may ask if the direction
of crack propagation plays a significant role, irrespective of accentuat-
ing curvature. With a curved crack front, the fracture process only
strictly follows the x direction at y =0. Anywhere else, the direction
of crack growth is at an angle, ¢ = tan~!(—da(y)/dy) # 0, to the x axis,
i.e., with respect to the overall direction of separation (see Figure 3).
This will have an effect on crack propagation rate in the local principal
direction: it will decrease as ¢ increases. We, therefore, raise the ques-
tion of whether G, should be considered as a local or as a global
property, the latter being averaged over the width of the joint. To
explain, if the joint were to consist of a large number of parallel, inde-
pendent, thin strip beams along the y direction, each of length a(y),
with different values of y, each would behave in fracture according
to its own, local, value of bending moment, function of a. However,



20: 07 21 January 2011

Downl oaded At:

802 J. Jumel and M. E. R. Shanahan

since the strips are in reality joined laterally, and therefore con-
strained, the overall fracture front will correspond to some kind of
averaging of the local effects over total joint width, b, leading to a glo-
bal value of G.. This phenomenon will be directly related to the crack
front curvature, even if constant: any increase in curvature, as dis-
cussed above, will only accentuate the effect. In addition, although
the fracture energy, G., is assessed from the area separated during
the fracture process, energy dissipation occurs at what is essentially
a fracture line, at any given moment. With a curved fracture front,
the length of the fracture front becomes ff: /22 [1+ (da/dy)"]"?dy > b,
and thus overall energy consumption will be greater. This does not
affect the overall surface detached, but non-rectilinear propagation
means that the separation occurs at a range of rates.

It should also be pointed out that, in the semi-analytical analysis,
the displacement field and, therefore, the strain energy evaluation,
have been approximated. This may have some influence on the final
form calculated for the crack front, but since the finite element analy-
sis leads to very similar findings, this is not thought to be a major
source of error.

The above ignores root rotation effects [28,29], which can be
important for the assessment of both beam shape and fracture energy.
These will be discussed in a future article.

CONCLUSION

The wedge test is a useful technique for the evaluation of adhesive
fracture energy. Although the test is usually considered to be an
essentially two-dimensional geometry, modelled as a beam, and
results, therefore, being independent of joint width, there is good rea-
son to believe that this simplification is not always acceptable. Some
of our results, and those in the literature, show that a curved crack
front can result. By considering the separated adherend as a plate
rather than a beam, curvature perpendicular to the principal bend-
ing can be shown to arise. Using the principle of minimal strain
energy as a criterion for plate shape, equations are derived to
describe adherend shape. By employing a form of perturbation
theory, approximate expressions are obtained for crack front shape
and strain energy. Values of the latter, compared with those obtained
from the beam model, can be significantly greater. The calculations,
in agreement with finite element analysis, suggest that the curva-
ture of the crack front becomes increasingly greater as the crack pro-
gresses, but our analysis considers only structural properties.
Material properties may also be important and may need to be taken
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into account in order to obtain a more exact appraisal of dynamic
crack shape. We discuss the relevance of the concept of local and
global failure criteria.
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